

Specialization/Minor in Data Science

EFFECTIVE FOR 2021-22 BATCH

2ND YEAR TO 4TH YEAR

Eligible Branches to adopt as Specialization

- **1. B.Tech.- Computer Science & Engineering**
- 2. B.Tech.- Electronics and Communication Engineering
- **3. B.Tech.- Electronics Engineering**

Evaluation Schemes for Specializations/Minor in B.Tech

			Special	izatio	n in	Data S	Science			
S.N	Code	Sem	Subject		Perio	ods	Evaluati	on Scheme	Total Marks	Credits
				L	Т	Р	Internal	External		
1.	SDS301	3 rd	INFORMATION MANAGEMENT	3	0	0	50	100	150	3
2.	SDS401	4^{th}	Scalable Data Science	3	0	0	50	100	150	3
3.	SDS501	5 th	Data Science for Engineers	3	0	0	50	100	150	3
4.	SDS601	6 th	Business Analytics and data mining Modeling using R	3	0	0	50	100	150	3
5.	SDS701	7 th	DATA- VISUALIZATION	3	0	0	50	100	150	3
6.	SDS801	8 th	Big Data Analysis	3	0	0	50	100	150	3
			Total	18	0	0	300	600	900	18

SDS201	ΙΝΙΕΩDΜΑΤΙΩΝΙ ΜΑΝΑΩΕΜΕΝΤ	L	Т	Р	С
505501	INFORMATION MANAGEMENT	3	0	0	3

	Contents	Hours
Unit 1	DATABASE MODELLING, MANAGEMENT AND DEVELOPMENT Database design and modelling - Business Rules and Relationship; Java database Connectivity (JDBC), Database connection Manager, Stored Procedures. Trends in Big Data systems including NoSQL - Hadoop HDFS, MapReduce, Hive, and enhancements.	8
Unit 2	DATA SECURITY AND PRIVACY Program Security, Malicious code and controls against threats; OS level protection; Security – Firewalls, Network Security Intrusion detection systems. Data Privacy principles. Data Privacy Laws and compliance.	8
Unit 3	INFORMATION GOVERNANCE Master Data Management (MDM) – Overview, Need for MDM, Privacy, regulatory requirements and compliance. Data Governance – Synchronization and data quality management.	8
Unit 4	INFORMATION ARCHITECTURE Principles of Information architecture and framework, Organizing information, Navigation systems and Labelling systems, Conceptual design, Granularity of Content.	8
Unit 5	INFORMATION LIFECYCLE MANAGEMENT Data retention policies; Confidential and Sensitive data handling, lifecycle management costs. Archive data using Hadoop; Testing and delivering big data applications for performance and functionality; Challenges with data administration.	

Suggested Readings :

- 1. Data Science For Cyber-security, by Adams Niall M, Heard Nicholas A, Rubin-delanchy Patrick, Turcotte Mellisa
- 2. Research Methods for Cyber Security, by Thomas W. Edgar, David O. Manz
- 3. Cybersecurity: The Beginner's Guide: A comprehensive guide to getting. by Erdal Ozkaya

SDS401	SCALABLE DATA SCIENCE	L	Т	Р	С
505401	SCALADLE DATA SCIENCE	3	0	0	3

	Contents	Hours
Unit 1	Background: Introduction Probability: Concentration inequalities Linear algebra: PCA, SVD Optimization: Basics, Convex, GD Machine Learning: Supervised, generalization, feature learning, clustering.	8
Unit 2	Memory-effi-cient data structures: Hash functions, universal / perfect hash families Bloom Iters Sketches for distinct count Misra-Gries sketch Statistical Mechanics an overview.	8
Unit 3	Memory-e¬cient data structures (contd.): Count Sketch, Count-Min Sketch Approximate near neighbors search: Introduction, kd-trees etc LSH families, MinHash for Jaccard, SimHash for L2	8
Unit 4	Randomized Numerical Linear Algebra CUR Decomposition Sparse RP, Subspace RP, Kitchen Sink.	8
Unit 5	Map-reduce and related paradigms Map reduce - Programming examples - (page rank, k-means, matrix Multiplication) Big data: computation goes to data. + Hadoop ecosystem	

Suggested Readings:

- 1. Data Science from Scratch: First Principles with Python, By Joel Grus.
- Python for Data Science For Dummies, By John Paul Mueller, Luca Massaron Data Analytics , by Anil Maheshwari 2.
- 3.

SDS501	DATA SCIENCE FOR ENGINEERS	L	Т	Р	С
505501	DATA SCIENCE FOR ENGINEERS	3	0	0	3

	Contents	Hours
Unit 1	Linear algebra for data science (algebraic view - vectors, matrices, product of matrix & vector, rank, null space, solution of over-determined set of equations and pseudo-inverse)	8
Unit 2	Linear algebra for data science (geometric view - vectors, distance, projections, eigenvalue decomposition).	10
Unit 3	Statistics (descriptive statistics, notion of probability, distributions, mean, variance, covariance, covariance matrix).	8
Unit 4	Optimization; Typology of data Science problems and a solution framework, Univariate and multivariate linear regression Model assessment (including cross validation).	10
Unit 5	Verifying assumptions used in linear regression, assessing importance of different variables, subset selection, Introduction to classification and classification using logistics regression, Classification using various clustering techniques	9

Suggested Readings:

- 1. Data Science and Big Data Analytics: ACM-WIR 2018 (Lecture Notes on Data Engineering and Communications Technologies), by Durgesh Kumar Mishra, Xin-She Yang, et al.
- 2. Introducing Data Science: Big Data, Machine Learning, and More, Using Python Tools , by Davy Cielen, Arno D.B. Meysman,
- 3. Data Science and Big Data Analytics: ACM-WIR , by Durgesh Kumar Mishra, Xin-She Yang.

SDS(01	BUSINESS ANALYTICS AND DATA MINING	L	Т	Р	С
SDS601	MODELING USING R	3	0	0	3

	Contents	Hours
Unit 1	General Overview of Data Mining and its Components Introduction and Data	
	Mining Process Introduction to RBasic Statistical Techniques. Data Preparation	8
	and Exploration Visualization Techniques.	
Unit 2	Data Preparation and Exploration Visualization Techniques Dimension	
	Reduction Techniques Principal Component Analysis, Performance Metrics and	12
	Assessment Performance Metrics for Prediction and Classification.	
Unit 3	Supervised Learning Methods Multiple Linear Regression, Supervised Learning	
	Methods NaÃ ⁻ ve Bayes, Supervised Learning Methods Classification &	8
	Regression Trees, Supervised Learning Methods Logistic Regression	
Unit 4	Supervised Learning Methods Logistic Regression Artificial Neural Networks.	
	Supervised Learning Methods and Wrap Up Artificial Neural Networks.	8
	Discriminate Analysis Conclusion	

Suggested Readings:

- 1. Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data , by EMC Education Services.
- 2. Practical Data Science with R Paperback, by Nina Zumel
- 3. Introducing Data Science: Big Data, Machine Learning, and More, Using Python Tools , by Davy Cielen, Arno D.B. Meysman.

DATA-VISUALIZATION

L	Т	Р	С
3	0	0	3

	Contents	Hours
Unit 1	Overview of Data Visualization, Introduction to Web Technologies Why Visualize Data, Introduction to SVG and CSS, Introduction to JavaScript, Introduction to VizHub, Making a Face with D3.	10
Unit 2	The Shapes of Data, Marks and Channels Input for Visualization: Data and Tasks, Loading and Parsing Data with D3.js, Encoding Data with Marks and Channels, Rendering Marks and Channels with D3.js and SVG, Introduction to D3 Scales, Creating a Scatter Plot with D3.	12
Unit 3	Common Visualization Idioms and Visualization of Spatial Data, Networks, and Trees Reusable Dynamic Components using the General Update Pattern: Reusable Scatter Plot, Common Visualization Idioms with D3.js, Bar Chart, Vertical & Horizontal, Pie Chart and Coxcomb Plot, Line Chart, Area Chart.	10
Unit 4	Using Color and Size in Visualization Encoding Data using Color, Encoding Data using Size, Stacked & Grouped Bar Chart, Stacked Area Chart & Stream graph, Line Chart with Multiple Lines.	8
Unit 5	Interaction Techniques and Multiple Linked Views Adding interaction with Unidirectional Data Flow, Using UI elements to control a scatter plot, Panning and Zooming on a Globe, Adding tooltips, Small Multiples, Linked Highlighting with Brushing, Linked Navigation: Bird's Eye Map.	

Suggested Readings :

- 1. Data Science and Big Data Analytics: ACM-WIR , by Durgesh Kumar Mishra, Xin-She Yang.
- 2. Practical Data Science with R Paperback, by Nina Zumel
- 3. Data Science from Scratch: First Principles with Python, By Joel Grus.

BIG DATA ANALYSIS

L	Т	Р	С
3	1	0	4

	Course Contents	Hours
UNIT I:	Introduction to Big Data: Big Data and its Importance – Four V's of Big Data – Drivers for Big Data –Introduction to Big Data Analytics – Big Data Analytics applications.	8hrs
UNIT II:	Big Data Technologies: Hadoop's Parallel World – Data discovery – Open source technology for Big Data Analytics – cloud and Big Data –Predictive Analytics – Mobile Business Intelligence and Big Data – Crowd Sourcing Analytics – Inter- and Trans-Firewall Analytics - Information Management.	8hrs
UNIT III:	Processing Big Data: Integrating Disparate Data Stores - Mapping Data To The Programming Framework- Connecting And Extracting Data From Storage - Transforming Data For Processing - Subdividing Data In Preparation For Hadoop Map Reduce.	8hrs
UNIT IV:	Hadoop Map reduce: Employing Hadoop Map Reduce - Creating the components of Hadoop Map Reduce jobs - Distributing data processing across server farms -Executing Hadoop Map Reduce jobs - Monitoring the progress of job flows - The Building Blocks of Hadoop Map Reduce - Distinguishing Hadoop daemons -Investigating the Hadoop Distributed File System Selecting appropriate execution modes: local, pseudo-distributed, fully distributed.	12hrs
UNIT V:	Advanced Analytics Platform: Real-Time Architecture – Orchestration and Synthesis Using Analytics Engines– Discovery using Data at Rest – Implementation of Big Data Analytics – Big Data Convergence – Analytics Business Maturity Model. Hadoop Eco-System: Pig – Installing and Running , Comparison with Databases – Pig Latin – User-Define Functions – Data Processing Operators – Installing and Running Hive– Hive QL – Tables – Querying Data – User-Defined Functions. Fundamentals of H Base and Zoo Keeper - IBM Info Sphere Big Insights and Streams. Visualizations - Visual data analysis techniques, Interaction techniques; Systems and applications.	12hrs

Text Books:

1. Michael Minelli, Michehe Chambers, "Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Business", 1st Edition, Ambiga Dhiraj, Wiely CIO Series, 2013.

- 2. Arvind Sathi, "Big Data Analytics: Disruptive Technologies for Changing the Game" 1st Edition, IBM Corporation, 2012.
- 3. Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data. Streams with Advanced Analytics", 1st Edition, Wiley and SAS Business Series, 2012.